GOVT. POLYTECHNIC KANGRA PLANNED THEORY SYLLABUS COVERAGE | GP
Kangra
SYLLABUS
COVERAGE | | Department: MECHANICAL ENGG. Subject:- THERMAL ENGG1 | | | | | | | | |--------------------------------------|-------------|--|--|--|------------------------------------|---------|--|--|--| | | | Sem. & Branch: | Duration:3 Years | | | | | | | | | | Total Periods:-56 | Practical: | - 28 | | | | | | | Sr.
No. | Period No's | Topic | Details | Instruction
Reference | Additional
Study
Recommended | Remarks | | | | | 2 9-18 | | Sources of Energy Internal Combustion Engines | cycle analysis; Brief description along | A Course in
Thermal
Engineering-
S.
Domkundwar
& C.P
.Kothandara
man, Dhanpat
Rai. | Recommended | | | | | | | | | with derivation of efficiency of Carnot, Otto and Diesel cycles with P-V and T-S diagrams, Internal and external combustion engines, classification of I.C. engines, Function of each part and materials used for the component parts - Cylinder, crank case, crank pin, crank, crank shaft, connecting rod, wrist pin, piston, cylinder heads, exhaust valve, inlet valve, Working of four-stroke and two-stroke petrol and diesel engines; Comparison of two stroke and four stroke engines; Comparison of C I and S.I. engines; Valve timing and port timing diagrams for four stroke and two stroke engines. | Thermal Engineering- R.S.Khurmi and J.K.Gupta, Introduction to Renewable Energy- Vaughn Nelson, | | | | | | | No. | 19-30 | I.C. Engine Systems | Fuel system of Petrol engines; Principle of operation of simple carburetor, Fuel system of Diesel engines, Plunger type fuel injection pump, fuel feed pump and fuel injector (description with line diagram). Cooling system, Air cooling, water cooling system with thermosiphon method of circulation and water cooling system with radiator and forced circulation (description with line diagram). Comparison of air cooling and water cooling system, Ignition systems—Battery coil ignition and | | | | | | | | | | magneto ignition (description and working). Comparison of two systems; Types of lubricating systems used in I.C. engines with line diagram; Objective of turbocharging and supercharging. | | | |-------|--|--|----|---| | 31-40 | Performance of I.C.
Engines | Brake power; Indicated power; Frictional power; Brake and Indicated mean effective pressures; Brake and Indicated thermal efficiencies; Mechanical efficiency, Relative efficiency; Performance test; Morse test; Heat balance sheet; Methods of determination of B,P., I.P. and F.P.; Simple nu Air | do | | | 41-56 | Compressors | Compressors: Functions of air compressor; Uses of compressed air; Types of air compressors; Single stage reciprocating air compressor - its construction and working (with line diagram); Multistage compressors-Advantages over single stage compressors; Description of Rotary compressors, Centrifugal compressor, axial flow type compressor and vane type compressors. 17 | | | | | Refrigeration & Air
conditioning (
Problems omitted) | Refrigeration system: components, | | 8 | | APPROVED | SIGN | HOD/OIC_ | |-------------|------|----------| | DATE-Aletas | | far | ## PISC-7.1 ## GOVT. POLYTECHNIC KANGRA PLANNED THEORY SYLLABUS COVERAGE | SYLLABUS
COVERAGE | | Department: Mechanical Engineering Subject: Manufacturing Engineering | | | | | | | | |----------------------|--------------------|--|---|---|--|---|--|--|--| | | | Sem. & Branch: 3rd Montani 11 | | | | | | | | | | | Total Periods | Theory: 56 Practical: 84 | | anne an de de la completa, es traj à restant une comme dels se définitions à tennés des la completa de la comp | and a side of the | | | | | Sr
No | Period Nos | Topic | Details | Instruction
Reference | Additional
Study | Remarks | | | | | 1. | 2-7 | Cutting Fluids &
Lubricants | Introduction to Manufacturing Engineering Syllabus
overview and Evaluation scheme
Introduction; Types of cutting fluids, Fluids and
coolants required in turning, drilling, shaping, sawing
& broaching; Selection of cutting fluids, methods of
application of cutting fluid; Classification of | Manufacturing
technology-P N
Rao, Tata Mc
Graw -Hill
Publications | Production
Technology~R
.B. Gupta,
Satya
Prakashan,
New Delhi | gaan hynym eisian y tii Calanain magii aahmaa ah 180 kg | | | | | 2. | 8-13 | Lathe Operations | ions applications of lubricants. Types of lathes – light duty, Medium duty and heavy duty geared lathe, CNC lathe (Concept only); Specifications; Basic parts and their functions; Operations and tools-Turning, parting off, Knurling, Jackins Boston deliberations, parting off, Knurling, | Elements of
workshop
Technology
(Volume 1&11)—
S.K. Hajra
Chaudary, Bose | Manufacturing
Technology,
Metal Cutting
& Machine
tools-P.N.Rao, | August Charles (Charles and Charles) | | | | | 3 | 14-20 | Broaching-Machine | curning. | & Roy,Media
Promoters and | Tata McGraw-
Hill | | | | | | | | and Cambridge Control of the | Pull up, pull down, and push down; Elements of broach
tool; Nomenclature; Tool materials for broaching. Classification: Basic parts and their functions; | Limited. Production | Publications Fundamental of metal cutting and | | | | | | | 25-30 | Welding | reamers. Classification; Gas welding techniques; Types of weldi- dlames; Are Welding -Principle, Equipme Applications; Shielded metal are welding; Submerg are welding: TIG / MG welding. | Technology
(Volume 1&11)-
O.P. Khanna &
Lal, Dhanpat
Rai
Publications. | machine tools—
B.L. Juneja,
New age_
international
limited. | | | | | | Post year | STATESTATE CONTROL | | Spot welding Seam welding Projection weldin
Welding defects; Brazing and soldering | | The second second | | | | | | 6. | 31-36 | Milling | | | | |-----|----------------|--|--|--|-----| | | | g | Introduction; Types of milling machines: plain, | | | | | The second | | Oniversal, vertical; constructional details | | | | | | | - specifications; Milling operations; simple | and the second s | | | | | | compound and differential indexing (No Numerical) | | | | | Park Profes | | Milling cutters -types; Teeth materials; Tool | | 2-5 | | | | | signature in ASA; Tool & work holding devices. | | | | | 37-42 | Gear Making | Manufacture of gears-by Casting, Moulding, | | | | | | | Stamping, Coining, Extruding, Rolling, Machining; | A Property of the | | | | | | Gear generating methods: Gear Shaping with pinion | | | | | | | cutter & rack cutter; Gear hobbing; Description of | 100 | | | | | - 100 | gear hob; Operation of gear hobbing machine; Gear | | | | | | 4 | finishing processes; Gear materials and specification; | | | | • | 43-50 | Press working (| Heat treatment processes applied to gears. | | | | | | derivations and | Types of presses and Specifications, Press working | | | | | | problems omitted) | operations Cutting banding | | | | | | · | operations- Cutting, bending, drawing, punching, | | | | | | | blanking, notching, lancing; Die set components- | | | | | | | punch and die shoe, guide pin, bolster plate, stripper, | | | | | | | stock guide, feed stock, pilot; Punch and die | | | | | | | clearances for blanking and piercing, effect of | | | | | 51-56 | Grinding and | clearance. | | | | | | finishing processes | Principles of metal removal by Grinding: Abrasives - | | | | | | | Natural & Artificial: Bonds and binding processes: | | | | | | | Vitrified, silicate, shellac, rubber, bakelite; Factors | | | | | | | affecting the selection of grind wheels: size and shape of | | | | | - | | wheel, kind of abrasive, grain size, grade and strength of | | | | 9 | | | bond, structure of grain, spacing, kinds of bind material; | | | | , | | | Grinding machines classification: Cylindrical, Surface, | | | | - | Action | | Tool & Cutter grinding machines; Construction details; | | | | | the freeze | | Principle of centerless grinding: Advantages & | | | | 11 | in the second | property of the second | limitations of centerless grinding: Finishing by grinding: | | | | | | and the special part of th | Honing, Lapping, Super finishing; Electroplating; Basic | | | | | 1 | | principles, Plating metals, applications; Hot dipping: | The second secon | | | 177 | La La Masteri | For realer to Many second | Galvanizing, Tin coating, Parkerising, Anodizing; Metal | | | | | - | | spraying: wire process, powder process and | | | | | dinarear agent | A | applications; Organic coatings;;Finishing specifications. | in the same of | | | | | | TI C C C C C C C C C C C C C C C C C C C | | | DATE (10) 812013 SIGN HOD/OIC PLANNED SYLLABUS COVERAGE (THEORY) | | P
angra | Departme
ENGINEER | | | | | |---|------------------|---|---|---|---------------------------------|-------| | | LLABUS
WERAGE | ERAGE Total Periods : 56 Theory : 56 | | | | | | | Period
No. | Topic | Details | Instruction
Reference | Additional
Study
Recommen | Remar | | - | 1-13 | | Unit cell and space lattice: (1.1)Crystal system: The seven basic crystal systems. (1.2)Crystal structure for metallic elements: BCC, FCC and HCP. (1.3) Coordination number for Simple Cubic, BCC and FCC. (1.4)Atomic radius: definition, atomic radius for Simple Cubic, BCC and FCC (Formula for the above terms without Derivation). (1.5) Atomic Packing Factor for Simple Cubic, BCC, FCC and HCP (derivations omitted) Bonds in solids: (1.6)Classification-primary or chemical bond, secondary or molecular bond. (1.7) Concept of Types of primary bonds: lonic, Covalent and Metallic Bonds. | MATERIAL
SCIENCE &
ENGINEERING
(R.K. Rajput) | | | | 2 | 14-26 | Phase
diagrams,
Ferrous
metals and
its Alloys | (2.1) Introduction of Isomorphs, eutectic and eutectoid systems. (2.2) Iron-Carbon binary diagram. (2.3) Iron and Carbon Steels. Iron ores—Pig iron: classification, composition and effects of impurities on iron. Cast Iron: classification, composition, properties and uses. Wrought Iron: properties, uses/applications of wrought Iron. (2.4) . Standard commercial grades of steel as per BIS and AISI. (2.5) Alloy Steels – purpose of alloying, effects of alloying elements, (2.6) Important alloy steels: Silicon steel, High Speed Steel (HSS), heat resisting steel, spring steel, Stainless Steel (SS). | MATERIAL
SCIENCE
(O.P. Khunn | (2) | | | 3 | 27-36 | Non-
ferrous
metals and
its Alloys | (3.1) Properties and uses of aluminum, copper, tin, lead, zinc, magnesium and nickel. (3.2) Copper alloys: Brasses, bronzes – composition properties and uses. (3.3) Aluminum alloys: Duralumin, hindalium, magnelium – composition, properties and uses. (3.4) Nickel alloys: Inconel, monel, nicrome – composition, properties and uses. (3.5). Anti-friction/Bearing alloys: Various types of bearing, bronzes-Standard commercial grades as per BIS/ASME. | i h | | | | No | 100 | Ne Topic | Details | Instruction | Additional | Rem | |--------|-------|--|--|---|-----------------------|-------------------| | 1 | | | (4.1): Invest | Reference | Study
Recommend | | | 0
0 | 37-45 | Failure
analysis &
Testing of
Materials | (4.1): Introduction to failure analysis. Fracture: ductile fracture, brittle fracture. cleavage, notch sensitivity, fatigue. (4.2) concept of endurance limit, concept of creep, creep curve, creep fracture (4.3) Destructive testing: Tensile testing, compression testing. Hardness testing: Brinell, Rockwell, bend test, torsion test, fatigue test, creep test. (4.4) Non-destructive testing: Visual Inspection, magnetic particle inspection, liquid penetrant test, ultrasonic inspection, radiography. | MATERIAL
SCIENCE &
ENGINEERIN
G
(R.K. Rajput) | | | | | | | (5.1): Nature of corrosion and its causes. (5.2): Electrolytes. (5.3): Factors affecting corrosion: Environment, Material properties and physical conditions. (5.4) Types of corrosion. (5.5) Corrosion control: Material selection, | | | The second second | | 46- | -54 | Corrosion &
Surface
Engineering | environment control. (5.6)Surface engineering processes: Coatings and surface treatments. Cleaning and mechanical finishing of surfaces. (5.7) Electroplating and Special metallic plating. (5.8)Electro polishing and photo-etching.— Conversion coatings: Oxide, phosphate and chromate coatings. Thin film coatings: PVD and CVD. (5.9) Hard-facing, thermal spraying and high-energy processes. | MATERIAL
SCIENCE
(O.P.
Khannu) | TO SECTION ASSESSMENT | | | | | 4 | • | | | Salar. | | APPROVED | SIGN HOD | |---------------|--| | DATE 8 8 2024 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | | | | | Nangra | | | ED SYLLABUS COVERAGE(T | heory) | .lselaa | |--------|------------|--|---|--------------------------------------|---| | 1 | LABUS | | Duration - 14 weeks | hanical E.B | gineering | | | _ | Total Periods - 56 | Theory - 56 hours | | | | 34.50 | Period Nus | | Details | Instruction
references | Additional Study
Recommended | | · | 1 10 14 | Introduction to
I hermodynamics - | Role of Thermodynamics in Engineering and science | Hane
Vicehonical
Lugineering | t tements of
Mechanical
Logineering - M.L. | | | | (6-10) | Properties State, Thermodynamic Equilibrium. Properties State, Process and Cycle. Elementary introduction to Zeroth, First and Work. and Second laws of thermodynamics, Heat and Work. | M.P.Poonis
& S.C.
Sharma, | Mathur, F.S. Mehta
and R.P. Theart, Jak
Brothers, New Defhi | | | | (11-14) | Interactions for various processes Concept of Heat Engine, Heat Pump & Refrigerator, Efficiency/COP, Kelvin-Planck and Charies Statements, Cornot Cycle, Carnot Efficiency, T-S and P-V Diagrams, Concept of Entropy | Khanna
Publishing
Hoose, Delhi | | | 2 1 | 2 1 U Z3 | est tramfer & Thermal | | | | | | | (15-20) | Heat Transfer, Modes of Heat Transfer, Conduction
Fourier Equation, Conduction heat transfer through
Composite Walls, Simple Numerical Problems, Convection
Heat transfer—Natural and inted convection, Radiation
Absorption, Reflection and transmission of radiation. | | | | | | (21-25) | Concept of black body. Steam-Boltzman Law (conception). No derivation). Thermal Power Plant Layout. Rankine Cycle. Fire Tube and Water Tube boilers. Babcock& Wilcox, Cochran Boilers. | i
i | | | 26 | TO 34 Inte | m Turbines &
rual Combustion | | | | | | Engi | - 1 | Impulse and Reaction Turbines Condensers Jet & | (| | | 1 | - 1 | | surface Condensers, Cooling Towers
Ino. Diesel and Dual cycles, P-V and T-S Diagrams | - 1 | | | | | 7/4 | C Engines 2-Stroke and 4-Stroke I C Engines, S I and
I Engines | | | | J5 T0 | Viano | riels and
factoring Processes
ations and | | | | | | Proble | (35-38) | gineering Materials. Classification and their Properties. | | | | l | | (39-42) | tal Working Hot Working and Cold Working Metal
ming Extrusion, Forging Rolling, Drawing. | | | | 1 | ı | I I I I | Welding, Arc Welding, Soldering, and Brazing | | | | 46 TO | | e Tools and | | 1 | | | | vinchin | | thine Tools Lathe Machine and types. Lathe | -, 1 | | | | | Mill | rations ing Machine and types, Milling Operations, Shaper Planer Machines | | | | | | (54-56) Diffe | rences, Quick Return Motion Mechanism , Drilling
time Operations, Grinding Machine: Operations | | | 18/8/2023 | GP | Department: Mechanical Engineering Subject: Measurements & Metrology | | | |----------|--|--------------------|--| | Kangra | Course: Diploma | Duration: 03 Years | | | Syllabus | Total Periods: 56(T) | Theory:56 | | | Planned | | | | ## SYLLABUS PLANNED | S.
N. | Perio
d No. | Topic | Details | Instruction
Reference | Additional
Study
recommen
ded | Remar
ks | |----------|----------------|--|---|---|--|-------------| | 1. | 1-7 | Introducti
on to
measurem
ents | Definition of measurement; Significance of measurement; Methods of measurements: Direct & Indirect; Generalized measuring system; Standards of measurements: Primary & Secondary; Factors influencing selection of measuring instruments; Terms applicable to measuring instruments: Precision and Accuracy, Sensitivity and Repeatability, Range, Threshold, Hysteresis, calibration; Errors in Measurements: Classification of errors, Systematic and Random error.(introduction only). | Instrumentat
ion
measuremen
t and
analysis-
B.C.Nakara,
K.K.Chauda
ry,second
edition, Tata
mc graw | 1.5 | | | 2. | 08-14 | Measurin
g
instrumen
ts: | . Introduction; Thread measurements: Thread gauge micrometer; Angle measurements: Bevel protractor, Sine Bar; Gauges: plain plug gauge, ring Gauge, snap gauge, limit gauge; Comparators: Characteristics of comparators, Types of comparators; Surface finish: Definition, Terminology of surface finish, Taly surf surface roughness tester; Coordinating measuring machine. | P | | V . | | 3. | 15-20 | Transduce
rs and
Strain
gauges | Introduction; Transducers: Characteristics, classification of transducers, Strain Measurements(concept only) Strain gauge, Classification, mounting of strain gauges, (Theoretical aspects) | Engineering | | | | 4. | 21-25 | Measurem
ent of
force,
torque,
and | Introduction; Force measurement: Spring Balance,
Load cell; Torque measurement: Prony brake, Eddy
current, Hydraulić dynamometer; Pressure
measurement: Mcloed gauge. | Publishers,
NewDelhi,2
005. | _ | | | | | pressure(
derivation
s omitted) | | | | | | 5. | 26-31 | Applied mechanic al measurem ents | Speed measurement: Classification of tachometers, Revolution counters, Eddy current tachometers; Displacement measurement: Linear variable Differential transformers (LVDT); Flow measurement: Rotometers, Turbine meter; Temperature measurement: Resistance thermometers, Optical Pyrometer. | - | | | | 6. | 32-36 | Miscellan
eous
measurem
ents
(Problems
omitted) | Humidity measurement: hair hygrometer; Density measurement: hydrometer; Liquid level measurement, sight glass, Float gauge. | | 5
5
5 | |-----|-------|--|--|------|-------------| | 7. | 37-40 | Limits,
Fits &
Tolerance
s | Concept of Limits, Fits, and Tolerances; Selective Assembly; Interchangeability; Hole And Shaft Basis; System; Taylor's Principle. | | | | 8. | 41-44 | Angular
Measurem
ent | Concept; Instruments For Angular Measurements; Working and Use of Universal Bevel Protractor, Sine Bar, Spirit Level; Principle of Working of Clinometers; Angle Gauges. | | | | 9. | 45-49 | Screw
thread
Measurem
ents | ISO grade and fits of thread; Errors in threads; Measurement of different elements such as major diameter, minor diameter, effective diameter, pitch; Two wire method; Thread gauge micrometer; Working principle offloating carriage dial micrometer. | | | | 10. | 50-53 | Gear
Measurem
ent and
Testing | Analytical and functional inspection; Rolling test;
Measurement of tooth thickness; Gear tooth Vernier;
Errors in gears such as backlash, run out, composite. | | | | 11. | 54-56 | Machine
tool
testing | Parallelism; Straightness; Squareness; Coaxiallity; roundness; run out; alignment testing of machine tools as per IS standard procedure. | 40 | | | | | | i i | P P | | | 1 | | | | (4+) | | | | | | 1) | 10. | | | | | | 5 | | | | | | | 1920 V | *** | | | | | | 11 11/1 | 21 | | | Approved | HOD Sign | |----------------|----------| | Date:- \0\8\23 | for |